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Abstract

Background: The constitutive androstane receptor (CAR, NRII3) plays a key role in the
transcriptional activation of genes that encode xenobiotic/steroid and drug metabolizing enzymes.

Results: The expression of CAR mRNA throughout the circadian rhythm is reported for the first
time in phase with the clock gene Bmall and in antiphase with the clock-controlled gene Rev-erbo
mRNAs, with a peak at Zeitgeber time (ZT) 20 and a trough at ZT8, and a peak/trough ratio of 2.0.
The diurnal difference in CAR mRNA expression might underlie the |.7-fold difference in the
magnitude of the PB-dependent induction of CYP2BI/2 mRNA.

Conclusion: The circadian oscillation of xenosensor gene CAR mRNA expression is partially
responsible for chronopharmacokinetics and chronopharmacology in disease.

Background

The superfamily of nuclear hormone receptor comprises a
group of transcription factors that play significant roles in
response to a number of biological regulators. In addition
to the pregnane X receptor (PXR, NR112), the constitutive
androstane receptor [1] (CAR, NR1I3) plays a role in the
transcriptional activation of genes that encode xenobi-
otic/steroid and drug metabolizing enzymes, such as cyto-
chrome P450 (CYP) 2Bs, 2C19, 3As, multidrug resistance-
associated protein 2 (MRP2), UDP-glucuronosyltrans-
ferase (UGT1A1), and 5-aminolevlinic acid synthase 1
(ALAS1) [2-8]. In response to xenobiotic PB, and other
PB-like ligands such as 1,4-bis [2-(3,5-dichlorpyridy-
loxy)]benzene (TCPOBOP) in rodents [9] and 6-(4-Chlo-
rpphenyl)imidazo  [2,1-b][1,3]thiazole-5-carbaldehyde
O-(3,4-dichlorobenzyl)oxime (CITCO) in humans [10],
high doses of acetaminophen [11], and bilirubin [12],
CAR forms a heterodimer with retinoid X receptor alpha

(RXRa) and subsequently binds to the direct repeat (DR-
4) motifs in such as the phenobarbital (PB)-responsive
enhancer module (PBREM) in the far upstream promoter
regions of mouse, rat and human CYP2B genes. In con-
trast, androstanol and androstenol were initially identi-
fied as inverse agonists [13] that reverse the constitutive
transactivating potency of CAR.

Recently, the mRNA expression of nuclear receptors, such
as peroxisome proliferater-activated receptor alpha
(PPARa), retinoic acid receptor (RAR)-related orphan
receptor (ROR) and RER-ERBa, have been reported to
show circadian rhythms in the liver [14-17]. Hepatic
PPARo. mRNA and protein levels follow a diurnal rhythm
which parallels that of circulating corticosterone. In addi-
tion, REV-ERBa expression is regulated by a circadian pos-
itive feedback loop attributable to the function of BMAL1/
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CLOCK heterodimers, and is negatively controlled by cir-
cadian negative lobe PER/CRY heterodimers [18,19].

Circadian variations in the chronopharmacokinetics and
chronopharmacology of various drugs such as theophyl-
line and propranolol have been recently reported [20].
Furthermore, daily fluctuations in hepatic P450 monoox-
ygenase activities responsible for the first phase of metab-
olism of various xenobiotics are well known. For example,
Cyp2a4, Cyp2a5, CYP7, and CYP3A are among those that
show circadian rhythmicities [21-23] that result from the
preceding rhythmic oscillations of transcription factors
including nuclear receptors.

We previously determined the transcriptional start site of
the rat Car gene (Kanno et al., 2003), resulting in the dis-
covery of the putative REV-ERBa/ROR responsive element
(RORE) at around -1.2 kb on the basis of published
genomic sequence (Mazny et al., accession number
AC099236). Thus, expression of the Car gene is expected
to occur in antiphase to that of the Perl gene and in phase
with the Bmall gene. In the present study, the expression
profile of the Car gene in rat liver was studied in compar-
ison with those of the clock gene Bmall, clock-controlled
gene Rev-erba and CAR-dependent PB-inducible CYP2B1/
2 gene.

Results

Rat hepatic expression of nuclear receptor CAR mRNA
follows a circadian rhythm

Apart from the clock gene BMAL1 and clock-directed gene
REV-ERBa, a time-dependent profile of CAR mRNA
expression was observed for the rat liver. CAR mRNA lev-
els oscillated during the day in phase with BMAL1 and in
antiphase with REV-ERBa mRNAs, with a peak at ZT20
and a trough at ZT8, and a peak/trough ratio of 2.0 (Figs.
1, 2A). The CYP2B mRNA expression profile was resem-
bled to the circadian oscillation of CAR mRNA but in a
much more blunted manner (Fig. 2B).

Diurnal difference in the induction of CYP2B by
phenobarbital

Since CAR is associated with the induction of metabolic
enzymes such as CYP2B, CYP3A, and UGT1A1, the circa-
dian rhythmicity of CAR mRNA expression may be
reflected in the diurnal-difference of PB-induction of
CYP2B1/2 mRNA. Therefore, we investigated the time-
dependent difference of the effect of PB-treatment on the
induction of CYP2B1/2 mRNA. CYP2B1/2 mRNA expres-
sion was comparatively evaluated at ZT13 and ZT1 after 5-
hours of PB treatment during ZT8 to ZT'13 (the minimum
zone of CAR mRNA expression) and ZT20 to ZT1 (during
which the expression of CAR mRNA was maximal),
respectively. Hepatic CYP2B1/2 mRNA was induced 2.2-
fold over the control level in the rats treated with PB
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between ZT8 and ZT13 [daytime treatment]. In contrast, it
was increased by 3.8-fold of the control level when the
rats were treated from ZT20 to ZT1 [nighttime treatment]
(Fig. 3). These data suggest that the diurnal-difference in
CYP2B1/2-induction might be affected by the circadian
rhythm of CAR mRNA expression.

Discussion

We previously reported that the induction of rat CYP2B1/
2 by PB is absent in the lung in contrast to the marked
response in the liver due to the improper splicing of CAR
mRNA during its maturation. [24,25]. The longitudinal
expression of CAR mRNA along the gastrointestinal tract
increases from the duodenum to the terminal jejunum
and then decreases toward the distal ileum while only
marginal expression can be observed in the stomach and
colon, implying a role for endogenous ligands such as
bilirubin glucuronides secreted in the duodenum [26]. A
single transcriptional start site was determined by com-
parison between the full-length mRNA and genomic
sequences. In the present study, we investigated whether
the expression of hepatic CAR mRNA shows circadian
rhythmicity, because clock-controlled regulation is
expected due to the presence of putative RORE in the pro-
moter region and electrophoretic gel mobility-shift assay
showed a slowly migrating band binding to the RORE
probe using nuclear proteins (data not shown).

The CAR mRNA level was found oscillation daily with a
peak at ZT20 and a nadir at ZT8. In contrast, BMAL1
mRNA peaked at ZT24/0 and hit the bottom at ZT'12 with
a 4-hours retardation, and REV-ERBa. mRNA showed a
peak at ZT8 and a trough at ZT20 exactly in antiphase with
CAR mRNA (Fig. 1).

In contrast to the self-sustained central clock present in
the brain, peripheral circadian clocks are retrained by
humonal factors such as glucocorticoid hormones
[27,28], as reflected in the diurnal rhythms observed for
PPARo and REV-ERBa.

Glucocorticoids are also responsible for the induction of
human CAR mRNA and protein via a distal glucocorticoid
response element in the 5'-franking region of the gene
[29], and the same might be true for its rat counterpart,
which was inducible by dexamethasone (data not
shown). PPARa. mRNA levels followed a similar diurnal
rhythm to that of the plasma level of corticosterone,
which is low in the morning (around ZT2), and increases
in the afternoon to reach a peak 2-3 hours before the
lights out (ZT9.5). Therefore, CAR mRNA oscillation
might not be retrained by the physiological diurnal varia-
tion of glucocorticoids in rats.
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Diurnal variations in CAR mRNA in the rat liver. Animals were sacrificed every 4 hours at Zeitgeber times (ZT) 4, 8,
12, 16, 20 and 24/0. mRNA levels of CAR, CYP2B1/2, BMALI, REV-ERBa and GAPDH were amplified by semi-quantitative RT-
PCR. After oligo(dT)-primed cDNA was synthesized from rat liver total RNA, PCR was conducted with an initial enzyme acti-
vation step at 95°C for 5 min followed by divergent cycles of denaturation at 95°C for |5 sec, annealing at 60°C for 30 sec and
extension at 72°C for 60 sec; CAR (27 cycles), CYP2B1/2, REV-ERBa and BMALI (30 cycles), and GAPDH (24 cycles). The
reaction products were separated by agarose gel electrophoresis and stained with ethidium bromide.

Recently, bilirubin was reported to be an endogenous acti-
vator of the CAR gene, which is in turn associated with the
induction of bilirubin metabolising proteins, such as
organic anion transporter SLC21A6, glutathione-S-trans-
ferase (GST), UGT1A1 and MRP2. Blood-bilirubin level
reaches a minimum at the end of the light period and a
maximum at the end of the dark period [30]. It is probable
that blood bilirubin may contribute to the retraining of
CAR expression to optimise bilirubin clearance.

Hepatic CYP2B1/2 mRNA level was found to be synchro-
nized with the CAR mRNA oscillation (Fig. 1). In the
clock-controlled gene cascade or network, the circadian
rhythm of CYP2B1/2 mRNA expression might be par-
tially, if not fully, explained by the hepatic CAR level.
Furukawa et al. showed that hepatic P450-dependent
monooxygenase activities measured by the O-dealkyla-
tion of 7-alkoxycoumarin fluctuate daily in F344 rats with
high values during the dark period [31]. In addition, these
fluctuations are regulated by a central clock present in the
suprachiasmatic nucleus [32]. Further, cholesterol 7-a
hydroxylase (CYP7), coumarin 7-a hydroxylase (Cyp2a4)
and coumarin 15-o hydroxylase (Cyp2a5) exhibit circa-
dian rhythmicities. These enzymes are transcriptionally
regulated by albumin D-site-binding protein (DBP),
which is another primary clock-controlled gene expressed
according to a robust daily rhythm in the SCN and several

peripheral tissues. Besides DBP, REV-ERBa is transacti-
vated by the binding of the BMAL1-CLOCK heterodimer
to the E-box motif in its enhancer region [33], and is
down-regulated by the clock gene PER-CRY heterodimer.
Neuronal PAS domain protein 2 (NPAS2) is highly related
in primary amino acid sequence to CLOCK, being able to
dimerize with BMALL1 as in the case of CLOCK. Further-
more, BMALI-NPAS2 heterodimer was found to
transactivate the same target genes as those of BMALI-
CLOCK such as Perl, Per2, Cryl and Rev-erba. Recently,
the transcription of Alas1 gene encoding for the aminole-
vulinate synthase 1 (Alas1) that is rate-limitting enzyme in
a heme biosynthesis was reported to be controlled in the
circadian clock mechanism.

Although Alas1 is regulated transcriptionally by CAR-
modulators having DR4 motifs in the promoter region as
well as CYP2B1/2, BMAL1-NPAS2 and BMAL1-CLOCK
heterodimers would be responsible for the daily physio-
logical fluctuation in phase with Rev-erba [34]. The circa-
dian transcription of CAR and CYP2B1/2 is likely directly,
indirectly or in combination dominated by these periph-
eral clocks and clock-controlled genes. The direct role of
RevErb in the regulation of CAR will have to be estab-
lished in further studies. For example ChIP analysis would
be required to show diurnal occupancy of the putative
RORE in the CAR promoter, and it has not yet been shown
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Figure 2

Diurnal difference in CAR and CYP2B mRNA levels
in the rat liver. Animals were sacrificed at ZT8 and ZT20
(n = 3—4), and CAR (A) and CYP2B (B) mRNA levels were
measured by semi-quantitative RT-PCR as described in the
legend to Fig. I. The results were normalized against those
for GAPDH. The columns and bars represent the means +
SD with a significant difference at *: p < 0.01

that Rev Erb a can modulate the transcription of the CAR
promoter.

We were also interested in whether the PB-dependent
induction of CYP2B1/2 mRNA is affected by the diurnal
rhythm of CAR. As shown in Fig. 3, PB-treatment at night
[ZT20-1] was 1.7-fold more effective than treatment dur-
ing the daytime [ZT8-13] in terms of the induction of
CYP2B1/2 mRNA. Although the timing of the injection of
PB and monitoring of CYP2B1/2 mRNA levels adopted in
this work might not have been optimal, the results
obtained suggested that the diurnal difference in the
expression of xenosensor genes may underlie chronophar-

http://www.nuclear-receptor.com/content/2/1/6

c #

5 40 ‘

2 30

° *

S 20 :

o

(]

& 0

& Daytime Nighttime
Figure 3

Diurnal difference of CYP2B induction. Animals were
sacrificed at ZT13 and ZT25/1 5-hour after the injection of
PB (gray columns) or veihcle (black columns) during ZT8-13
[Day] and ZT20-1 [Night], respectively. Oligo(dT)-primed
cDNA was synthesized from rat liver total RNA from each
animal, and CYP2B mRNA levels were measured by STBR
Green real-time RT-PCR. The results were normalized
against those of GAPDH. The columns and bars represent
the means * SD with significant differences compared to the
individual controls at *, #: p < 0.05

macokinetics and chronopharmacology in a clinical
setting.

Conclusions

Nuclear receptor CAR mRNA expression oscillates during
the day with a peak at ZT20 and trough at ZT8 in
antiphase with REV-ERBq, as expected due to the presence
of putative ROREs in the promoter region.

Since the magnitude of PB-induction of CYP2B1/2 mRNA
showed at least a 1.7-fold difference during the day, the
diurnal-difference of CYP2B-induction by PB might be
controlled by the circadian rhythm of CAR mRNA
expression.

Methods

Animals and treatments

Eight week-old male Wistar rats (Clea) were kept under a
12-hours light-dark (LD12:12) cycle and provided food
and water ad libitum. After more than 2 weeks of housing,
the rats were killed at Zeitgeber times (ZT) 0, 4, 8, 12, 16,
20 and 24: ZT0 was lights-on and ZT12 is lights-out. For
the PB-induction of CYP2B, the rats were i.p. injected with
PB at ZT8 and ZT20 and sacrificed at ZT13 and ZT1,
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respectively. The livers were then dissected and used for
the isolation of total RNA.

RNA analysis by RT-PCR and Real-Time RT-PCR

Total RNA was extracted from rat liver homogenate using
an RNeasy Kit (QIAGEN, Hilden, Germany). After
incubation at 65°C for 10 min, the extracts were quickly
placed in an ice-cold water bath. Oligo-dT primed cDNA
was synthesized from 1 pg of total RNA using RTG You-
Prime First-Strand Beads (Amersham Biosciences, NJ),
and left at room temperature for 1 min. Reverse transcrip-
tion was then performed at 37°C for 1 hour to obtain
cDNA. PCR was next performed in a total reaction mixture
(25 pl) containing 1 pl each of RT-reaction mixture, Ex
Taq DNA polymerase (Takara, Japan) and each of primer
pair. cDNA was amplified for 24 (GAPDH), 27 (CAR) or
30 (BMAL1, REV-ERVa, CYP2B) cycles of denaturation at
95°C for 15 sec, annealing at 60°C for 30 sec, and exten-
sion at 72°C for 1 min in a thermal cycler. The reaction
products were separated by agarose gel electrophoresis
and analyzed by a Flour Imager (Amersham Biosciences)
after staining with ethidium bromide. Real-time PCR was
carried out for the quantitation of each transcript in a reac-
tion mixture consisting of 2 pl of the cDNA, 1 pl each pair
of primers, 21 pl of water and 25 pl of iQ SYBER™ Green
Supermix (BIO-RAD, CA). PCR was performed with an
initial enzyme activation step at 95°C for 5 min followed
by 50 cycles of denaturation at 95°C for 30 sec, annealing
at 56°C for 30 sec and extension at 72°C for 45 sec in a
real-time DNA thermal cycler (iCycler™, BIO-RAD). The
following oligonucleotides were used as forward and
reverse primers, respectively: 5'-ACCAGTTTGTGCAGT-
TCAGG-3' and 5'-CITGAGAAGGGAGATCTGGT-3' for
CAR, 5'-GAGTTCITCTCTGGGITGCTG-3' and 5'-ACTGT-
GGGTCATGGAGAGCTG-3' for CYP2B1/2, 5'-AACAT-

GGCACTGAGCAGGTCTCC-3' and 5'-
GGCATGTCCTATGAACATGTACC-3' for REV-ERBa, 5'-
GCAAACTACAAGCCAACATTTCTAT-3' and 5'-

CTTAACTTTGGCAATATCTTTTGGA-3' for BMAL1, and 5'-
ACCACAGTCCATGCCATCAC-3" and 5'-TCCACCACCCT-
GTTGCTGTA-3' for glyceraldehyde-3-phosphate dehydro-
genase (GAPDH). The amplified cDNA was quantitated
by the number of cycles (or cross point) at which the flu-
orescence signal was greater than a defined threshold dur-
ing the logarithmic phase of amplification. The results
were shown relatively to the control level after normaliza-
tion to that of GAPDH.
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