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Abstract
Background: Hepatocyte nuclear factor-4α (HNF4α; NR2A1) is an orphan member of the
nuclear receptor superfamily involved in various processes that could influence endoderm
development, glucose and lipid metabolism. A loss-of-function mutation in human HNF4α causes
one form of diabetes mellitus called maturity-onset diabetes of the young type 1 (MODY1) which
is characterized in part by a diminished insulin secretory response to glucose. The expression of
HNF4α in a variety of tissues has been examined predominantly at the mRNA level, and there is
little information regarding the cellular localization of the endogenous HNF4α protein, due, in part,
to the limited availability of human HNF4α-specific antibodies.

Results: Monoclonal antibodies have been produced using baculovirus particles displaying gp64-
HNF4α fusion proteins as the immunizing agent. The mouse anti-human HNF4α monoclonal
antibody (K9218) generated against human HNF4α1/α2/α3 amino acids 3–49 was shown to
recognize not only the transfected and expressed P1 promoter-driven HNF4α proteins, but also
endogenous proteins. Western blot analysis with whole cell extracts from Hep G2, Huh7 and
Caco-2 showed the expression of HNF4α protein, but HEK293 showed no expression of HNF4α
protein. Nuclear-specific localization of the HNF4α protein was observed in the hepatocytes of
liver cells, proximal tubular epithelial cells of kidney, and mucosal epithelial cells of small intestine
and colon, but no HNF4α protein was detected in the stomach, pancreas, glomerulus, and distal
and collecting tubular epithelial cells of kidney. The same tissue distribution of HNF4α protein was
observed in humans and rats. Electron microscopic immunohistochemistry showed a chromatin-
like localization of HNF4α in the liver and kidney. As in the immunohistochemical investigation
using K9218, HNF4α mRNA was found to be localized primarily to liver, kidney, small intestine and
colon by RT-PCR and GeneChip analysis.
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Conclusion: These results suggest that this method has the potential to produce valuable
antibodies without the need for a protein purification step. Immunohistochemical studies indicate
the tissue and subcellular specific localization of HNF4α and demonstrate the utility of K9218 for
the detection of P1 promoter-driven HNF4α isoforms in humans and in several other mammalian
species.

Background
Hepatocyte nuclear factor-4α (HNF4α; NR2A1), a mem-
ber of the nuclear receptor superfamily, is one of the key
regulators of hepatocyte differentiation in mammals [1–
3]. Like other members of the nuclear receptor super-
family, HNF4α possesses two DNA-binding domains that
consist of a conserved zinc finger motif, and a ligand bind-
ing domain to facilitate activated transcription in vitro and
in vivo. HNF4α binds DNA only as a homodimer and is
activated by fatty acyl-CoA thioesters [4], although
HNF4α is also capable of promoting transcription in the
absence of exogenously added ligands. HNF4α appears to
be an important element in the regulation of several
hepatic genes, including those involved in the metabo-
lism of fatty acids, lipoproteins, and lipids (apo A-I, apo
A-II, apoB, apoC-II, apoC-III, medium chain acyl-CoA
dehydrogenase, microsomal triglyceride transfer protein,
and fatty acid-binding protein), glucose metabolism
(aldolase B, phosphoenolpyruvate carboxykinase, and
pyruvate kinase), P-450 enzymes (CYP2A4, CYP7A1, and
CYP2C9), amino acid metabolism (tyrosine aminotrans-
ferase and ornithine transcarbamylase), hematopoiesis
(transferrin), blood coagulation (factors VII, VIII, IX, and
X), and liver differentiation (HNF-1α) [1,5–12]. In addi-
tion, mutations of the HNF4α gene in humans are directly
associated with maturity onset diabetes of young type 1
(MODY1), a rare form of noninsulin-dependent diabetes
mellitus inherited in an autosomal dominant manner and
characterized by defective secretion of insulin [13–15].
However, the precise physiological roles of HNF4α and
mechanisms of gene transactivation are not yet clearly
understood.

Several isoforms of HNF4α have been cloned and charac-
terized, and disruption of the HNF4α gene in mice results
in a lethal embryonic phenotype characterized by a failure
of the visceral endoderm to differentiate [16–18]. The
HNF4α gene consists of 13 exons spanning over 70 kbp,
among which several correspond to alternative exons (Fig.
1A). To date, less than 9 isoforms are proposed in mam-
mals, and all are speculated to have different physiologi-
cal roles in development and the transcriptional
regulation of target genes. During early liver development,
HNF4α transcription initiates from the promoter for
HNF4α7 (P2 promoter) characterized by alternative first
exons (1D), and HNF4α1 promoter (P1 promoter) tran-
scripts become abundant [19]. While HNF4α7 more effi-

ciently activates the α-fetoprotein and transthyretin
promoter than HNF4α1, HNF4α1 more efficiently trans-
activates the apoCIII promoter than HNF4α7. It has been
shown that HNF4α4 containing two additional exons in
the amino-terminal domain has a lower transactivation
potential than HNF4α2 [20]. However, numerous studies
have been conducted on the tissue distribution of HNF4α
using Northern blot analysis, RT-PCR, the RNAase protec-
tion assay and in situ hybridization using antisense RNA
probes [20–24]. Although these reports show that HNF4α
is mainly expressed in liver, kidney, intestine, and pan-
creas, its protein expression levels and distribution of
HNF4α isoforms are still not fully understood due, in
part, to the limited availability of specific antibodies.

To clarify the tissue-specific expression and localization of
HNF4α, we have produced monoclonal antibodies
(Mabs) that specifically recognize this nuclear receptor. In
this report, we show that Mabs can be produced using a
recombinant baculovirus display system without the
requirement of a protein purification step. Immunohisto-
chemical studies demonstrated that HNF4α isoforms
originated from P1 promoter are expressed in liver, proxi-
mal tubular cells of kidney, intestine, and colon, but not
in stomach and pancreas or other tissues. We also show
that this method will be of great benefit in developing spe-
cific antibodies to investigate the physiological functions
of the nuclear hormone receptors and can be applied to
other protein targets.

Results
Specificity of the HNF4α monoclonal antibody
The structure of the human HNF4α gene and the gp64
fusion proteins are shown in Fig. 1. The sequence of the
human HNF4α gene indicates that there are at least 9 dif-
ferent splicing variants, which are coded by 13 exons (Fig.
1A). Exon 1A corresponds to the first exon originally
described for the HNF4α1 promoter (P1 promoter) and
will generate 6 different isoforms. HNF4α1 is the initially
identified transcript; HNF4α2 and HNF4α3 are splicing
variants that contain a larger exon 9 or 8, generating a 10-
amino acid insertion and a completely distinct F domain,
respectively (Fig. 1B). HNF4α4/α5/α6 contains two addi-
tional exons in the amino-terminal region together with
alternative combinations of the F domain as found in
HNF4α1/α2/α3. HNF4α7/α8/α9 are expressed in a tis-
sue-specific manner from a recently discovered promoter
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(P2 promoter) and are characterized by an alternative first
exon (1D). In this study, the amino-terminal region of
HNF4α1/α2/α3 was fused with gp64 and used to immu-
nize mice.

Figure 1C shows the immunoblot analysis of transfected
and expressed HNF4α protein and endogenous protein
expression in several cultured cells using K9218. The anti-
body generated using HNF4α-gp64 fusion protein as an
immunizing agent, was able to detect not only baculovi-
rus-expressed HNF4α-gp64 fusion protein (data not

shown) but also CHO-expressed HNF4α2 and 3 in immu-
noblot analysis (Fig. 1C, lane 1 and 2). Although we
immunized gp64 fusion protein containing exon 1A and
a part of exon 2 regions, K9218 did not recognize CHO-
expressed HNF4α7 and 8, suggesting its precise epitope is
mapped during exon 1A (data not shown). These data
indicate that K9218 at least recognizes HNF4α1/α2/α3
but not P2 promoter-driven isoforms. It has been reported
that HNF4α is mainly expressed in the liver, kidney, intes-
tine and colon. In accordance with previous reports,
HNF4α protein was highly expressed in the hepatocellular

Schematic illustration of the human HNF4α gene, gp64 fusion proteins and Western blot analysis of HNF4α protein using K9218 made to the human HNF4α1/α2/α3 A/B domain.Figure 1
Schematic illustration of the human HNF4α gene, gp64 fusion proteins and Western blot analysis of HNF4α 
protein using K9218 made to the human HNF4α1/α2/α3 A/B domain. (A) Human HNF4α gene structure. Shown are 
the 13 exons of the human HNF4α gene. In the human genome, an alternative promoter referred to as P2 promoter is located 
45.6 kb from the previously characterized P1 promoter. Exons are shown as boxes. (B) Schematic representation of HNF4α 
isoforms and gp64 fusion proteins. The A/B domains of HNF4α1 /α2/α3 are encoded by exon 1A and by exon 2 for the last 19 
amino acids. The amino terminal amino acids of HNF4α1/2/3 were inserted between the signal peptide and gp64 mature 
domain. (C) The specificity of K9218 was tested by Western blot analysis using HNF4α2- and HNF4α3-transfected CHO and 
cultured cells. Whole cell extracts from CHO cells transfected with human HNF4α2 and HNF4α3 (4 µg) or cultured cells (20 
µg) were utilized for detection of the HNF4α.
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carcinoma cell line Hep G2, Huh7 and the colorectal ade-
nocarcinoma cell line Caco-2. On the other hand, the
human kidney cell line HEK293 showed no expression of
HNF4α protein (Fig. 1C, lane 6), as suggested previously
[25,26].

Immunohistochemical localization of HNF4α protein in 
human tissues
Intensive staining for HNF4α was observed using forma-
lin-fixed and paraffin-embedded sections in the nucleus
of hepatocytes in the liver, proximal tubules in the kidney,
and mucosal epithelial cells in the small intestine (Fig.
2A,2B,2C,2D,2E,2F). Weak staining in mucosal epithelial
cells in the colon was also observed (Fig. 2G). Sinusoidal

cells and bile ducts in the liver (data not shown), glomer-
ulus, distal tubules, Henle's loop, and collecting ducts in
the kidney, pancreas (Fig. 2I), and mucosal epithelial cells
in the stomach (Fig. 2H) were negative for HNF4α immu-
noreaction. There were no HNF4α-positive cells in other
tissues.

Immunohistochemical localization of HNF4α protein in 
rat tissues
The distribution of HNF4α-positive cells in these organs
was confirmed in rat tissues using frozen (Fig. 3C and 3F)
and formalin-fixed and paraffin-embedded tissues (Fig.
3). As in human tissues, a nuclear localization of HNF4α
was observed in the hepatocytes in the liver, proximal

Immunohistochemical localization of HNF4α in human tissuesFigure 2
Immunohistochemical localization of HNF4α in human tissues. Paraffin sections were stained with HNF4α K9218 
antibody. A positive reaction (brown colour) is seen in the nucleus of hepatocytes in the liver (A and D), mucosal epithelial 
cells of the small intestine (B and E) and proximal tubules of the kidney (C and F), and colon (G). Epithelial cells of the stomach 
(H), pancreas (I), glomerulus, distal tubules, and collecting tubules of the kidney are negative. Paraffin sections show the same 
staining pattern as frozen sections. Original magnification: D, E, F ×400; A, B, C, G, H, I ×200.
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tubules in the kidney, and mucosal epithelial cells in the
small intestine and colon. The pattern of immunoreactiv-
ity in the nucleus was consistent with the chromatin dis-
tribution (Fig. 4). These findings indicate that HNF4α
isoforms encoded by exon 1A are limited to the liver, kid-
ney, and intestines and HNF4α is localized mainly in the
chromatin compartment.

RT-PCR and GeneChip analysis of HNF4α mRNA
In order to test whether the expression of the HNF4α pro-
tein paralleled a corresponding expression of the mRNA,
RT-PCR and GeneChip analysis were carried out using
several human tissue RNA samples. The RT-PCR results
are shown in Fig. 5. Primers that can amplify the amino-

terminal region of HNF4α1/α2/α3 were used. Although
HNF4α4/α5/α6 must be detectable using these primers,
amplified PCR products corresponding to these isofroms
were not detected. HNF4α P1 promoter transcripts are
detected only in kidney, liver, colon, and small intestine
by RT-PCR analysis as HNF4α protein is observed in cer-
tain tissues only (Fig. 5). Table 1 summarizes the results
of the immunohistochemical study and mRNA levels
detected by RT-PCR and GeneChip analysis. GeneChip
analysis also clearly showed a moderate to high level of
expression of HNF4α mRNA in the liver, kidney, small
intestine, and colon. These findings are consistent with
the immunohistochemical study showing protein expres-
sion in these tissues, suggesting again the specificity of our

Immunohistochemical localization of HNF4α in rat tissuesFigure 3
Immunohistochemical localization of HNF4α in rat tissues. Frozen sections (C and F) and paraffin sections (A, B, D-E, 
G-I) were stained with HNF4α K9218 antibody. A positive reaction (brown colour) is seen in the nucleus of hepatocytes in the 
liver (A and D), mucosal epithelial cells of the small intestine (B and E) and colon (G), and the proximal tubules of the kidney (C 
and F). Epithelial cells of the stomach (H), pancreas (I), glomerulus, distal tubules, and collecting tubules of the kidney are nega-
tive. Paraffin sections show the same staining pattern as frozen sections. Original magnification: D, E, F ×400; A, B, C, G, H, I 
×200.
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antibody. Taken together, these results suggest that our
monoclonal antibody against human HNF4α specifically
detects endogenous protein.

Discussion
In this study we have generated a monoclonal antibody
against the amino-terminal domain of human HNF4α1/
α2/α3. This antibody has been useful in Western blot
analyses and in immunohistochemical studies of P1 pro-
moter-driven HNF4α isoforms cellular localization
within tissues of humans and rats. Furthermore, this anti-
body is applicable to formalin-fixed and paraffin-embed-
ded tissues as well as frozen tissues (Fig. 2 and our
unpublished data). Since the production of monoclonal
antibodies has been limited by the considerable time

required for the production and purification of recom-
binant proteins, the inability in many instances to obtain
natively folded protein, and the limited size and diversity
of peptide epitopes, we decided to use baculovirus parti-
cles displaying surface gp64 fusion protein as an immu-
nizing agent.

Using these approaches, we have cloned a hybridoma cell
line that produced HNF4α-specific monoclonal antibody
with high affinity to the antigen, as demonstrated by
Western blot analysis and immunohistochemistry. The
immunohistochemical localization of HNF4α protein
reported here is in accordance with that of the expression
of HNF4α mRNA determined by RT-PCR and GeneChip
analysis indicates the utility of this antibody for the detec-

Immunoelectron microscopic detection of HNF4α in rat hepatocytes and renal tubulesFigure 4
Immunoelectron microscopic detection of HNF4α in rat hepatocytes and renal tubules. Rat liver and proximal 
tubules of kidney were immunostained with K9218 and examined by electron microscope. Immunoelectron microscopy indi-
cates a dense HNF4α nuclear distribution in hepatocytes (B and E) and proximal tubules (C and F). A and D; Negative control. 
(A-C; ×2,000, D-F: ×10,000)
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RT-PCR analysis of the amino terminal domain of HNF4α1/2/3 transcript in normal human tissuesFigure 5
RT-PCR analysis of the amino terminal domain of HNF4α1/2/3 transcript in normal human tissues. Total RNA 
was reverse-transcribed and amplified. Primers corresponding to the A/B domains (see Fig. 1B) were used to amplify products 
of 138 bp. PCR products were resolved on 2% agarose gel with ethidium bromide.
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tion of HNF4α. The generation of antibody has been
impeded by the requirement of purified protein or
peptides for use as the immunizing agent. In addition,
bacterial expression systems have proven to be of limited
use in the generation of antibodies to recognize antigens
in their native configurations due to the complexity of
eukaryotic protein modification and folding. It has been
reported that a variety of proteins which require complex
folding or extensive posttranslational modification have
been successfully expressed and used as antigens for the
production of monoclonal antibodies with baculovirus
expression systems [27–29]. With this method, produc-
tion of the gp64-fusion protein is easily verified using an
anti-gp64 monoclonal antibody. In addition, we have
demonstrated that gp64 fusion protein can be highly
expressed on the recombinant virus surface [30]. This

allowed us to use recombinant viral particles as the immu-
nizing agent without a purification step. Thus, these
results suggest that this method has the potential to pro-
duce valuable antibodies without further purification.

To date, much of the analysis of HNF4α cellular localiza-
tion has been done at the RNA level, by Northern blot
analysis, in situ hybridization, RNAase protection assay or
RT-PCR on RNA isolated from developmental cells at dif-
ferent stages and distinct cell populations within tissues
[20–24,31]. These studies have shown that the liver, kid-
ney, small intestine and colon are predominant tissues for
the vertebrate HNF4α isoforms. In addition, substantial
levels of HNF4α mRNA are found in the pancreas and
stomach. K9218 clearly showed predominant immunos-
taining of nuclear localized HNF4α protein in hepatocytes

Table 1: Expression of HNF4α protein and mRNA in human and rat tissues. Summary of HNF4α protein and mRNA expression levels 
in human and rat tissues.

Immunohistochemistry mRNA expression

Rat Human RT-PCR GeneChip

Brain - - - 25.0
Epidermis - - n.t. 21.9 (skin)
Kidney + + + 413.9

Glomeruli - -
Proximal tubules + +
Henle's loops - -
Distal tubules - -
Collecting ducts - -

Liver + + + 467.6
Hepatocytes + +

Pancreas - - n.t. 20.0
Heart - - - 14.1
White adipose tissue - - n.t. n.t.
Spleen - - - 9.2
Esophagus - - n.t. n.t.
Stomach - - n.t. 35.0
Small intestine + + + 291.8
Colon + + + 186.3
Bladder - - n.t. 17.2
Testis - - - 7.2
Ovary - - n.t. 15.5
Adrenal gland - - - 15.2
Uterus - - - 11.5
Thymus - - - 19.8
Thyroid gland - - - 24.2
Trachea - - - 20.1
Lung - - - 12.1
Breast n.t. n.t. n.t. 13.4
Salivary gland - n.t. - 10.6
Skeletal muscle - - - 9.2
Placenta - - - 10.1
Prostate n.t. n.t. - 6.5

+, positive; -, undetectable; n.t., not tested. Data were taken from both results shown in Figs. 2, 3 and 5.
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of liver, mucosal epithelial cells of intestine and colon,
and proximal tubules of the kidney in humans and rats. In
contrast, the nuclear localization of HNF4α in pancreas
and mucosal epithelial cells of the stomach is not detected
by K9218 immunostaining. P2 promoter-driven isoforms
are not recognized although K9218 recognizes HNF4α
isoforms originated from P1 promoter (Fig. 1C and T.
Tanaka et al. unpublished data). From these results, it sug-
gests that P2 promoter-driven HNF4α isoforms are specif-
ically expressed in some restricted tissues, e.g. stomach
and pancreas, and have distinct properties. In fact, HNF4α
isoforms containing a unique N-terminal sequence
encoded by exon 1D, reportedly absent in kidney but
present at high levels in stomach, was also found in a ded-
ifferentiated cell line [24]. As described recently [32,33],
HNF4α transcripts of the pancreas contain exon 1D, but
those of liver or kidney exclusively contain the exon 1A
sequence, whereas both forms are expressed in small
intestine. HNF4α transcripts containing exon 1A were up-
regulated at birth and represented the only isoforms in
adult-like hepatoma cells, while transcripts containing
exon 1D were abundantly expressed in embryonic liver
and fetal-like hepatoma cells [19]. Interestingly, the
HNF4α transcript containing exon 1D is already dimin-
ished two days after birth and practically undetectable two
weeks later. At present, the precise expression profile of P2
promoter-driven HNF4α isoforms and its significance in
endoderm development are not clear, and should be clar-
ified in further studies using other antibodies against the
carboxy terminal domain or amino terminal domain of
HNF4α7/α8/α9.

HNF4α is a unique member of the nuclear receptor super-
family for several reasons. In general, the activity of a
nuclear receptor can be controlled by several fashions, i.e.,
binding of ligand, covalent modification, and protein-
protein interactions, generally through contact with other
nuclear receptors and cofactors. These mechanisms can
either work individually or in concert to modulate a spe-
cific signal. HNF4α, by contrast, binds DNA only as a
homodimer with a relatively high affinity, and is also
capable of promoting transcription in the absence of
exogenously added ligands [34,35]. Consequently, the
expression levels, subnuclear distribution and post-trans-
lational modification of HNF4α protein seem to be criti-
cal determinants of its transactivation potency, not
activation or interaction by ligand with other nuclear
receptors and heat shock protein as seen in steroid hor-
mone receptors. Certainly, an exclusively nuclear staining
was observed, indicating that HNF4α is constitutively
translocated to the nucleus in the physiological state. In
addition, immunoelectron microscopic analysis clearly
demonstrated that HNF4α had a chromatin-like distribu-
tion and formed nuclear clusters. Much evidence has been
accumulated suggesting that the intranuclear localization

of nuclear receptors is closely related to transcriptional
activity. It has been shown that ligand-activated nuclear
receptors, such as androgen receptor, glucocorticoid
receptor, and mineralocorticoid receptor, formed nuclear
clusters, whereas the distribution of inactivate receptors is
homogeneous [36–39]. Furthermore, Ktistaki et al. [40]
reported that the activity of HNF4α is post-translationally
regulated by tyrosine phosphorylation and thereby con-
centrated in distinct nuclear compartments. In contrast,
compartmentalization was disrupted by the tyrosine
phosphorylation inhibitor genistein. From these observa-
tions, although the exact meaning of the localization in
the nucleus remains to be elucidated, HNF4α appears to
be mainly localized in the transcriptionally active region
(euchromatin) under physiological conditions.

Conclusions
The experiments reported herein indicate the utility of our
antibody for the detection of HNF4α isoforms originated
from P1 promoter in humans and rats. This antibody
should be useful for clarifying the presence of HNF4α iso-
forms in various tissues and several developmental stages,
and for the investigation of the interactions between
HNF4α and other nuclear proteins such as cofactors.

Methods
Animals and tissue samples
Male and female Wistar rats (260–300 g) were obtained
from Charles River Inc. Japan (Tokyo, Japan) and main-
tained under standard conditions at the Laboratory Ani-
mal Center of Niigata University School of Medicine. All
animals were allowed free access to laboratory chow and
tap water. Livers and other tissues were obtained after cer-
vical dislocation. Human tissues were obtained from
autopsy cases in which the autopsy was conducted within
5 hours of death.

Cell culture
Hep G2, Huh7, Caco-2 and HEK293 cells were grown in
Dulbecco's modified Eagle's medium (DMEM, Sigma)
supplemented with 10% fetal bovine serum (FBS, Sigma),
100 units/mL penicillin G sodium, and 100 µg/mL strep-
tomycin (Gibco BRL). Chinese Hamster Ovary (CHO)
cells were cultured in Nutrient Mixture F-12 HAM (Sigma)
supplemented with 10% FBS, 100 units/mL penicillin G
sodium, and 100 µg/mL streptomycin.

Production of monoclonal antibody
We have reported that foreign proteins can be displayed
on the surface of Autographa californica multiple nuclear
polyhedrosis virus (AcMNPV) and produced monoclonal
antibody by directly introduced the recombinant virus
into mice in the absence of a protein purification step
[30]. The human HNF4α1/α2/α3 cDNA encoding amino
acids 3–49 was amplified by polymerase chain reaction
Page 9 of 12
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(PCR) with primers 5'-GGGGTACCCATGGCCGACTA-
CAGTG-3' and 5'-GGGGTACCGCGCTGACACCCAG-
GCTG-3', and ligated into the gp64 gene to create a fusion
protein on the viral surface (Fig. 1). This expression cas-
sette was then inserted into the viral DNA by homologous
recombination via co-transfection of the transfer vector
and baculovirus DNA (Bac-N-Blue DNA, Invitrogen) into
Spodoptera Frugipedra (Sf9) cells. Following two rounds of
purification, recombinant virus was injected into 6-week
old female BALB/c mice. Three days after the final admin-
istration, mice were sacrificed and lymphocytes from the
spleen were fused with NS-1 myeloma cells using polyeth-
ylene glycol. The fused cells were cultured in HAT (0.1
mM hypoxanthine, 0.16 mM thymidine and 0.1 mM
aminopterin) selection media for 10 to 14 days at 37° to
select for surviving fusion clones. Hybridoma tissue cul-
ture supernatant containing the surviving clones was
tested by ELISA and immunoblot analysis to confirm spe-
cific immunoreactivity to the antigen. The fusion clones
selected in the primary screening were further divided into
single-cell subclones, which were tested by immunoblot-
ing using transfected and expressed full-length HNF4α
protein.

Immunoblotting
Whole cell extracts from HNF4α-transfected CHO or cul-
tured cells were resolved by SDS-polyacrylamide gel elec-
trophoresis (10%) and electroblotted to ProBlott
membranes (Applied Biosystems). Membranes were
blocked with Block Ace (Dainippon Pharmaceutical) for 1
hour at room temperature. The blot was probed with
mouse anti-human HNF4α-specific monoclonal antibody
(K9218) and then incubated with anti-mouse IgG horse-
radish peroxidase-conjugated antibodies (Sigma). Pro-
teins were detected using SuperSignal® West Dura
Extended Duration Substrate (Pierce).

Transient transfection
CHO cells were plated in 6-well plates at 1.3 × 105 cells 18
hours prior to transfection. Transfections were performed
with TransIT LT-1 transfection reagent (Mirus) using 2 µg
of pcDNA3-hHNF4α2 or pcDNA3-hHNF4α3 expression
vector per well.

Preparation of whole cell extracts
Several cultured plates and HNF4α-transfected plates were
washed twice with ice-cold PBS and the cells harvested by
scraping into ice-cold PBS. Cells were pelleted by centrifu-
gation at 2,000 × g for 5 min, and resuspended in ice-cold
lysis buffer (20 mM Hepes pH 7.9, 20% (v/v) glycerol,
400 mM KCl, 0.5 mM EDTA, 1 mM DTT, 2 µg/mL apro-
tinin, pepstatin A and leupeptin, and 0.5 mM PMSF). The
cells were then lysed by three freeze-thaw cycles (liquid N2
bath for 3 min followed by incubation at 37° for 3 min)
and the cellular debris was pelleted by centrifugation at

20,000 × g for 10 min. The protein concentration in the
supernatant was determined by Bradford assay (Bio-Rad)
according to the manufacturer's instructions.

Immunohistochemistry
Rat and human tissues were fixed for 1 day at room tem-
perature in 10% formalin. The samples were sequentially
dehydrated with an alcohol series and embedded in par-
affin. For comparison, some tissues were fixed for 4 hr at
4°C with periodate lysine-paraformaldehyde (PLP) and
were embedded in OCT compound (Miles, Elkhart, IN).
The paraffin sections (4 µm thick) were treated with avi-
din, biotin, and normal horse serum to minimize non-
specific staining. These tissues were incubated with a
monoclonal antibody against HNF4α (K9218) dissolved
in 1% BSA/PBS at a final concentration of 10 µg/mL for 2
hr at 25°C or overnight at 4°C. After several washes with
PBS, the sections were stained with anti-mouse IgG for 1
hr (Vectastain Elite ABC kit, Vector, CA). To prevent
endogenous peroxidase reactions, the samples were pre-
treated with 0.3% H2O2 in cold methanol for 30 min and
were subsequently incubated with avidin and HRP-conju-
gated biotin for 30 min. Finally, 0.1 mg/mL of 3, 3'-diami-
nobenzidine (DAB) tetrahydrochloride was applied to
sections for 5 min. In order to assign the HNF4α-associ-
ated immunostaining, the sections were counterstained
with hematoxylin.

The immunohistochemical staining patterns were exam-
ined using samples collected from 3 individual rats and
autopsy cases. To confirm the specificity of the immuno-
histochemical localization, antibodies preabsorbed with
an excess of antigens were used.

Immunoelectron microscopy
For immunoelectron microscopic detection of HNF4α, rat
liver and kidney were fixed with PLP for 1 hr and cut into
50-µm-thick sections with a vibratome (DTK-1000,
Dosaka, Osaka, Japan). After the inhibition of endog-
enous peroxidase activity by the method of Isobe et al.
[41] the sections were immunostained with 10 µg/mL of
K9218. These samples were incubated with a peroxidase-
conjugated anti-mouse IgG (Fab fragment, NA9310,
Amersham, England) and were developed with DAB.
Thereafter, they were postfixed with 1.0% osmiun tetrox-
ide for 2 hr. After dehydration in a graded series of ethanol
solutions, the samples were processed through propylene
and were embedded in Epon 812 (E. Fullan, Inc., Latham,
NY). Ultrathin sections were stained with uranyl acetate
and lead citrat, then examined with an electron micro-
scope (H-800, Hitachi, Tokyo, Japan). Other reagents
were obtained from Sigma Chemical (St.Louis, MO).
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Detection of HNF4α mRNA by RT-PCR
Fifteen out of twenty samples prepared from pools of
human total RNA were purchased from Clontech (Human
Total RNA Master Panel II, Palo Alto, CA). To synthesize
first-strand cDNA, RNA was annealed to a random hex-
amer and extended with SuperScript II reverse tran-
scriptase (Invitrogen, Calsbad, CA) according to the
manufacturer's recommended protocol. PCR was carried
out on the first-strand cDNA using the primers written in
the section on the preparation of monoclonal antibody.
After an initial melting step at 94°C for 3 min, the oligo-
nucleotide primers were melted at 94°C for 30 sec,
annealed to the cDNA template at 60°C for 30 sec, and
extended at 72°C for 1 min. After 30 cycles, the reaction
was extended at 72°C for 5 min. The amplification
products were analyzed on 2.0% agarose gels stained with
ethidium bromide.

Determination of tissue distribution of HNF4α mRNA 
levels by GeneChip analysis
Four out of five RNA samples prepared from pools of
human RNA were purchased from Clontech (Palo Alto,
CA). These are listed followed by the number of tissues
pooled and the Clontech catalog number in parentheses:
salivary gland, pooled (64026-1); testis, 19 (64027-1);
trachea, 84 (64091-1); adrenal gland, 61 (64096-1);
whole brain, single donor, (64020-1). Those prepared
from polyA RNA are also indicated in parentheses; for
others, total RNA was used. Twelve total RNA samples pre-
pared from a single donor were purchased from Ambion
(Austin, TX). Catalog numbers for these tissues are in
parentheses: placenta (7950); pancreas (7954); thymus
(7964); heart (7966); spleen (7970); ovary (7974);
kidney (7976); skeletal muscle (7982); small intestine
(7984); colon (7986); prostate (7988); bladder (7990).
Four total RNA samples were purchased from Strategene
(La Jolla, CA): breast, single donor (735044); uterus, 3
(735042); thyroid, single donor (735040); and skin, 2
(735031). In addition, normal human tissue from liver,
stomach and lung was obtained with informed consent.
Total RNAs were extracted from these specimens using
ISOGEN (Wako Pure Chemical Industries, Japan).

Experimental procedures for GeneChip were performed
according to the Affymetrix GeneChip Expression Analy-
sis Technical Manual. Briefly, 10 µg of RNA was used to
synthesize biotin-labeled cRNA, which was then hybrid-
ized to the high-density oligonucleotide array (GeneChip
Human U133 array; Affymetrix, Santa Clara, CA). After
washing, arrays were stained with streptavidin-phyco-
erythrin, and image data were collected and analyzed
using a Hewlett-Packard Scanner. The GeneChip Analysis
Suite software version 5.0 was used to calculate the aver-
age difference (Avg. Diff.) for each gene probe on the

array. The average differences were normalized for each
array such to have a mean value of 100.
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