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Abstract
Nuclear receptors (NRs) usually bind the corepressors N-CoR and SMRT in the absence of ligand
or in the presence of antagonists. Agonist binding leads to corepressor release and recruitment of
coactivators. Here, we report that estrogen receptor β (ERβ) binds N-CoR and SMRT in the
presence of agonists, but not antagonists, in vitro and in vivo. This ligand preference differs from that
of ERα interactions with corepressors, which are inhibited by estradiol, and resembles that of ERβ
interactions with coactivators. ERβ /N-CoR interactions involve ERβ AF-2, which also mediates
coactivator recognition. Moreover, ERβ recognizes a sequence (PLTIRML) in the N-CoR C-
terminus that resembles coactivator LXXLL motifs. Inhibition of histone deacetylase activity
specifically potentiates ERβ LBD activity, suggesting that corepressors restrict the activity of AF-2.
We conclude that the ER isoforms show completely distinct modes of interaction with a
physiologically important corepressor and discuss our results in terms of ER isoform specificity in
vivo.

Background
The nuclear receptor (NR) family comprises 48 structur-
ally related transcription factors, many of which require
their cognate ligand for activity [1–3]. The NRs regulate
transcription by binding to response elements in the pro-
moters of target genes and acting as scaffolds for the
assembly of large coactivator and corepressor complexes
[4]. NR coactivators include the p160s (including GRIP1/
TIF-2, SRC-1 and AIB1/ACTR/pCIP). The p160s enhance
transcription by binding histone acetyl-transferases such
as p300/CBP and pCAF [5]and methyl-transferases such
as CARM1 and PRMT [6] which, in turn, enhance tran-
scription by modification of chromatin. Other NR coacti-

vators include TRAP220[7], which is part of a larger
complex (TRAP/DRIP/SMCC/mediator) that contacts the
basal transcription machinery and PGC-1[8], a cold
inducible coactivator that binds CBP and SRC-1 and pro-
teins involved in RNA processing [9]. NR corepressors
include NR corepressor (N-CoR) and silencing mediator
of retinoid and thyroid responsive transcription (SMRT)
[4]. Both N-CoR and SMRT repress transcription, at least
in part, by binding to histone de-acetylases (HDACs)
either directly or indirectly through other corepressor
complex components. Other known NR corepressors
include RIP140 [10], Hairless [11], short heterodimer
partner (SHP) [12] and DAX [13], and receptor specific
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corepressors such as the estrogen receptor (ER) interacting
proteins REA and HET-SAFB [14,15].

Generally, NR transcriptional activity is dictated by the
balance between coactivator and corepressor recruitment,
and one of the most important factors that influences this
balance is the absence or presence of agonist ligands
(reviewed in [4]). Unliganded NRs such as thyroid (TRs)
and retinoid receptors (RARs) bind corepressors, and lig-
and promotes release of corepressor and subsequent bind-
ing of coactivators. The mechanism of this coregulator
exchange is well understood. NRs consist of three
domains, the N-terminal domain (which contains a con-
text-specific activation function AF-1), the central DNA
binding domain (DBD) and the C-terminal ligand bind-
ing domain (LBD), which contains a hormone-dependent
activation function, AF-2. The unliganded LBD recognizes
hydrophobic motifs, termed interaction domains (IDs),
which are reiterated three times in N-CoR and twice in
SMRT and conform to the consensus L/IXXIIXXXL [4](see
also[16]). By contrast, the liganded LBD binds shorter
hydrophobic motifs termed NR boxes that are reiterated
several times within each coactivator and conform to the
consensus LXXLL. The LBD utilizes a large hydrophobic
cleft composed of residues along H3 and H5 to bind IDs
[17], and a smaller hydrophobic cleft that is composed of
residues in the upper part of H3 and H5 and H12 (and
corresponds to AF-2) to bind NR boxes [18]. Thus, ago-
nists promote coregulator exchange by promoting the
packing of H12 over the lower part of the ID binding
region, an event that simultaneously completes the coac-
tivator binding surface. In other cases, however, the bal-
ance of coactivator and corepressor recruitment is
regulated by direct competition for the AF-2 surface,
rather than ligand-dependent coregulator exchange.
RIP140, Hairless and DAX possess NR boxes that interact
with AF-2 [11,13,19] and these corepressors act as nega-
tive regulators of the activity of the liganded NR.

The NR family contains two related ERs (ERα and ERβ)
that conform to the typical three domain NR structure and
share extensive sequence homology in the DBD and LBD
region[20,21]. Analysis of the function of the individual
ERs in mouse knockout models suggests that the major
proliferative effects of estrogen are mediated by ERα and
not by ERβ, which seems to play an inhibitory role in pro-
liferation in some studies[22,23]. The ligand-binding
properties of the ERs are different, with ERβ often exhibit-
ing stronger binding to plant-derived phytoestrogens
[24]. More importantly, the ERs exhibit isoform-specific
effects on gene expression. Both ERs enhance transcrip-
tion from genes with classical estrogen response elements
(EREs), but ERα requires less ligand to obtain maximal
activation than ERβ [25,26]. Likewise, both ERs suppress
the activity of the TNFα promoter in response to estro-

gens, but ERβ is a more potent repressor than ERα [27].
However, some of the most striking isoform-specific dif-
ferences in gene regulation are observed at promoters,
such as that of cyclin D1, which contain AP-1 sites or
related cyclic AMP response elements (CREs). ERα
enhances AP-1 activity in response to estrogens, [28,29]
but ERβ inhibits AP-1 activity in response to estrogens
[29–31]. ERβ also completely suppresses ERα activity at
the cyclin D1 promoter and even suppresses the activity of
an ERα mutant that is selectively superactive at AP-1 sites
and CREs [29]. Finally, ERβ shows a unique capacity to
enhance AP-1 activity in response to selective estrogen
receptor modulators (SERMs) such as raloxifene,
tamoxifen and ICI 182,780/Faslodex (ICI) [30–32].
Together, these observations suggest that there are funda-
mental differences in the way that the ERs bind unspeci-
fied cofactors that modulate gene expression, and that
some of these cofactors must play a role in differential ER
activity at AP-1 sites.

Although the poorly conserved NTD region clearly plays
an important role in isoform-specificity [32,33], it is also
likely that there are differences in the better conserved
LBD region that contribute to differential ERα and ERβ
activities. Phage display techniques have revealed that
ERα and ERβ show different preferences in LXXLL binding
(reviewed in [34,35]). Moreover, some cofactors that con-
tain LXXLL motifs show differential binding to LBDs of
the ER isoforms (reviewed in [36]). SHP binds ERα pref-
erentially [37], and represses ERα activity more strongly
than that of ERβ. The PGC-1 related protein PERC also
binds ERα preferentially, and potentiates ERα activity
more strongly than that of ERβ [38]. We recently observed
that ERα binds the C-terminal NR interacting regions of
N-CoR and SMRT in the presence of SERMs but not estro-
gens [39]. In this study, we report that ERβ interactions
with N-CoR and SMRT are promoted by agonists and
inhibited by SERMs. Thus, the ERs show completely
opposite ligand preferences of interaction with corepres-
sors. We discuss the potential significance of these differ-
ent modes of ER interaction with N-CoR in terms of
known isoform-specific behaviors.

Results
Agonist Dependent ERβ Interactions with N-CoR and 
SMRT
To investigate ERβ interactions with corepressors, we
examined the interactions of full length ERβ (amino acids
1–530) with bacterially expressed C-terminal NR interact-
ing domain of N-CoR (amino acids 1944–2453) in vitro
(Fig. 1A). Fig. 1B reveals, surprisingly, that ERβ bound N-
CoR in the absence of hormone and in the presence of
agonist ligands (E2, DES) and phytoestrogens (genistein,
coumestrol). Moreover, these interactions were sup-
pressed by SERMs (ICI, raloxifene and tamoxifen). ERβ
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bound to the coactivator GRIP1 more strongly than N-
CoR, but did so with an identical ligand preference. Simi-
lar agonist-dependent interactions could be observed
between ERβ and the alternate NR corepressor SMRT in
vitro (Fig. 1C). Control binding experiments performed in
parallel confirmed that ERα bound to N-CoR in the pres-
ence of SERMs, and not estradiol (Fig. 1D) and that TRβ
bound N-CoR in the absence of hormone, and was
released in the presence of T3, whereas TRβ only bound
GRIP1 in the presence of T3 (Fig. 1E).

To examine interactions between ERβ and N-CoR in
mammalian cells we performed two-hybrid assays using a
GAL4 DBD/N-CoR C-terminus fusion protein as bait and
a VP16-ERβ LBD fusion as the prey. Fig. 2 shows that the
ERβ-LBD bound N-CoR in the presence of agonists and
phytoestrogens, but not SERMs. Control two-hybrid
assays confirmed that a VP16-TRβ LBD fusion protein

bound N-CoR in the absence of hormone, but not in the
presence of T3. E2 dependent binding of ERβ to N-CoR
was dose dependent (Fig. 2B) with an EC50 (0.3 nM) that
resembled that of ERβ binding to the GRIP1 NR box
region (amino acids 610–770). Thus, ERβ binds the N-
CoR C-terminal NR interacting region in the presence of
agonists, but not SERMs, and does so in vitro and in mam-
malian cells. Moreover, results from the two-hybrid assay
indicate that the ERβ LBD is sufficient to obtain estrogen-
dependent interactions with N-CoR.

ERβ Interactions with N-CoR are Dependent on AF-2 and 
require H12
Unliganded NRs usually bind ID motifs (consensus L/
IXXIIXXXL) in the N-CoR C-terminus. To ask whether ERβ
might bind these motifs in the presence of estradiol, we
examined the ability of peptides containing known NR
interacting motifs to compete for the interaction (Fig. 3A).

ERβ Binds N-CoR in the Presence of AgonistsFigure 1
ERβ Binds N-CoR in the Presence of Agonists. (A) Schematic of N-CoR primary structure. Silencing domains are indicated 
with hatched bars. NR binding regions (ID motifs) are illustrated with solid bars. (B) Radiolabeled ERβ retained by GST-N-
CoR (amino acids 1944–2453) or GST-GRIP1 (amino acids 563–1121) after separation by SDS-PAGE. The amounts of bound 
proteins are compared to 10% of the input protein used in the binding assay in this experiment, and all results shown in the 
paper. (C) Radiolabeled ERβ retained by GST SMRT (amino acids 987–1491). (D) Radiolabeled ERα retained on GST-N-CoR 
beads in parallel. (E) Radiolabeled TRβ retained on GST-N-CoR and GST-GRIP1 beads in parallel.
Page 3 of 15
(page number not for citation purposes)



Nuclear Receptor 2003, 1 http://www.nuclear-receptor.com/content/1/1/4
A peptide overlapping to the N-CoR ID1 motif (amino
acids 2265–2291) that competes for N-CoR binding to
unliganded TR and RAR [16]failed to compete for agonist-
dependent ERβ interactions with N-CoR. By contrast, a
peptide corresponding to GRIP1 NR box 2 did compete
for this interaction [40,41]. This finding suggests that ago-
nist-bound ERβ does not recognize ID motifs, and that
ERβ interactions with N-CoR more closely resemble those
with GRIP1.

NR interactions with N-CoR are usually mediated by a
hydrophobic cleft that spans residues from H3 and H5
and includes residues that lie under H12 in the liganded
configuration [4,17]. These interactions are either
independent of, or inhibited by, NR H12 [17,39,42]. By
contrast, NR interactions with coactivators are mediated
by residues from the upper part of H3–H5 and also
require H12 itself [18]. Fig. 3B shows that a mutation in a
conserved residue on H12 that is required for coactivator
binding (E493K) abolished the interaction of ERβ with
both N-CoR and GRIP1. Moreover, other mutations in the
upper part of the H3–H5 region that comprises the AF-2
surface (D303Y, I310R and K314A on H3; V328R and
L331R on H5) abolished ERβ interaction with both cofac-
tors. Control mutations in other regions of the ERβ sur-
face left its interactions with N-CoR and GRIP1 either
slightly reduced or intact (these are L301R at the base of
H3, V361R in the S-bends, M379R in H8; L426R, T434R
in the H10 and Y488S in the H11–H12 loop). Thus, ERβ
interactions with N-CoR are dependent on the AF-2 sur-
face (including H12) and, in this regard, resemble those of
ERβ and GRIP1.

ERβ Binds an NR Box-Like Motif in the N-CoR C-terminus
To map the region of N-CoR that interacted with ERβ, we
examined ERβ binding to a series of rationally designed
smaller fragments of the N-CoR C-terminus (Fig. 4). ERβ
did not bind two of these smaller fragments of N-CoR
(1944–2033; 2230–2322) that contain known ID motifs
(IDs 3 and 1 [16]). ERβ bound weakly to two regions of
N-CoR (2033–2123; 2123–2230), one of which (2033–
2123) contains an ID motif (ID2), but did so in a ligand-
independent fashion. However, ERβ did bind to a frag-
ment that spanned the extreme C-terminus (2322–2453)
and did so in a manner that was promoted by E2 and sup-
pressed by ICI, much like the interactions of ERβ with the
entire N-CoR nuclear receptor interacting region.

The interaction of ERβ with the small N-CoR C-terminal
fragment (amino acids 2322–2453) was stronger than
that observed with the intact C-terminus (amino acids
1944–2453). This apparently improved binding is likely
to be a consequence of our methodology (West et al.
Unpublished data). In general, expression of large frag-
ments of the N-CoR C-terminus in E. Coli yields a mix of

ERβ Binds N-CoR in the Presence of Agonists in Mammalian CellsFigure 2
ERβ Binds N-CoR in the Presence of Agonists in Mammalian 
Cells. (A) Two-hybrid assays. Components of the two-
hybrid assay are shown in schematic at top. Results of a rep-
resentative assay are shown below (with error bars repre-
senting the standard error of values determined from three 
separate wells). Ligand concentrations were: ICI, raloxifene, 
Genistein, Coumestrol; 1 uM, Tamoxifen; 5 uM, estradiol 
DES 100 nM. (B) Estradiol dependence of ERβ interactions 
with N-CoR and GRIP1 fusion proteins in mammalian cells. A 
representative experiment is shown. Error bars represent 
standard deviations from four wells.
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ERβ AF-2 is required for Corepressor and Coactivator BindingFigure 3
ERβ AF-2 is required for Corepressor and Coactivator Binding. (A) Peptide competition for ERβ binding to cofactors. Binding 
of ERβ to GST-N-CoR was assessed in the presence of 10µg of designated competitor peptide. (B) Binding of VP16-ERβ LBD 
mutants to Gal-N-CoR and Gal-GRIP1 was analyzed. Luciferase activity obtained with Gal-fusion and VP16-ERβ in the pres-
ence of estradiol (100 nM) over four experiments was corrected for background and set to 100%. Activity obtained with ERβ 
mutants was compared to this value. Standard errors are shown.
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full length protein along with truncated products. To cre-
ate the expression vectors for the smaller fragments, trun-
cated N-CoR polypeptides that were obtained in E. Coli
extracts were subjected to protein sequence analysis and
cDNA fragments that coded for the major truncated
products were prepared. Each of the resulting polypep-

tides was expressed very efficiently in E. Coli. The end
product that was obtained after GST purification essen-
tially consisted of a single short polypeptide as judged by
Coomassie stain. Binding of ERβ to N-CoR (2322–2453)
is probably very efficient for two reasons. First, equal
amounts of GST fusion protein were used as baits for the

ERβ binds the N-CoR C-terminusFigure 4
ERβ binds the N-CoR C-terminus. Binding of ERβ to short bacterially produced GST-N-CoR fragments was assessed as in Fig. 
1B. The approximate positions of N-CoR IDs are indicated with black bars, the putative ERβ interacting motif with a grey bar. 
Note that all of the binding experiments with shorter N-CoR fragments were performed in parallel, and are compared to the 
same input ERβ protein (10% of total) displayed alongside the 1944–2033 fragment. A binding experiment that was performed 
in parallel utilizing the entire GST-N-CoR C-terminus (1944–2453) is shown for comparison at top. The likely reasons that 
ERβ binding to the shorter N-CoR fragment (2322–2453) is stronger than that obtained with the intact N-CoR C-terminus are 
discussed in the text.
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translated ERβ protein in this series of experiments (3µg
per assay). Thus, N-CoR (2322–2453) is present in molar
excess over N-CoR (1944–2453). Second, as developed
above, preparations of N-CoR (1944–2453) generally
contain truncated products, so sequences corresponding
to the extreme N-CoR C-terminus (which binds ERβ) is
markedly under-represented. In any case, the fact that ERβ
binds weakly or not at all to the three N-CoR ID motifs
that mediate interactions with TRs and RARs and, instead,
binds in an agonist-dependent fashion to a region in the
C-terminus of N-CoR that has not previously been impli-
cated in NR interactions indicates that ERβ recognizes a
novel protein sequence motif within N-CoR.

The N-CoR C-terminus contains the sequence PLTIRMLS
(β-box, amino acids 2399–2406; Fig. 5). This sequence
does not exactly conform to the LXXLL consensus, but
contains features (underlined) that resemble the ERβ H12
region (LLLEML), and artificial ERβ interacting LXXLL
peptides (293, PNLISLLS; D47, PLLLSLLS), both of which
bind to the ERβ AF-2 surface [43–47]. Moreover, the
presence of a proline residue amino-terminal to the
hydrophobic groups is typical of so-called class II LXXLL
motifs which are found in ERβ interacting cofactors such
as TRAP220 and RIP140[45]. Finally, the unusual C-ter-
minal hydrophobic pair (ML) has been observed in ERα
and ERβ H12[43,44,48], and in RIP140 NR boxes [19].

We investigated the significance of the β-box in ERβ inter-
actions with N-CoR. As Fig. 6A shows, a synthetic β-box
peptide competed for binding to N-CoR, albeit somewhat
less efficiently than native GRIP1 NR box 2. Similar results
were obtained in competition experiments that used GST-
GRIP1 instead of GST-N-CoR (data not shown). The iso-
lated β-box also acted as bait for a VP16-ERβ fusion pro-
tein in mammalian cells, and did so with similar
efficiency to other known ERβ interacting peptides (Fig.
6B). Finally, mutations within the β-box (especially
M2405A, L2406A) disrupted ERβ interactions with N-
CoR in mammalian two-hybrid assays, but did not affect
TRβ interactions (Fig. 6C). Thus, the β-box is sufficient to
bind ERβ and is essential for agonist-dependent ERβ inter-
actions with the N-CoR C-terminus.

Next, we examined whether the β-box would bind other
NRs. The Gal-β-box fusion failed to recruit the ERα, TRβ
or RARβ LBDs in mammalian two-hybrid assays (Fig. 7A).
Moreover, while the β-box and GRIP1 NR box 2 peptides
both competed for ERβ interactions with GRIP1, only the
NR box 2 peptide competed for ERα interactions with
GRIP1 (Fig. 7B). Thus, the N-CoR β-box is, at least to
some degree, ERβ specific. Mutation of N-CoR to obtain a
β-box sequence that more closely resembled a conven-
tional LXXLL motif (T2402L) led to enhanced hormone-
dependent interactions with ERβ and permitted novel

hormone-dependent interactions with ERα (Fig. 7C).
Thus, some of the observed ERβ specificity is probably a
consequence of an unexpected ability to tolerate the
absence of a leucine residue at the N-terminus of the
LXXLL motif. Together, our results indicate that ERβ has
the potential to utilize its AF-2 surface to bind NR boxes
within coactivators or an NR box-like sequence in the C-
terminus of N-CoR.

A HDAC Repressor Enhances ERβ Activity
Since ERβ bound N-CoR and SMRT in the presence of
estrogens, we investigated the possible involvement of
corepressors in the actions of agonist-bound ERβ in vivo.
To perform this experiment, we examined the effect of the
HDAC inhibitor trichostatin A (TSA) on ERβ activity in
transiently transfected HeLa cells. Fig. 8A confirms that
ERα shows stronger transcriptional activity than ERβ at a
simple ERE responsive reporter gene. TSA enhanced the
basal activity of the ERE-TK reporter gene by about fifteen-
fold in the absence of ER (see inset). However, TSA also
equalized the relative transcriptional activity of both ERs.
Fig. 8B shows that the isolated ERα LBD exhibited more
potent transcriptional activity than the ERβ LBD. How-
ever, both LBDs showed similar transcriptional activity in
the presence of TSA. Thus, corepressor complex HDACs
must play an unspecified role in restricting the transcrip-
tional activity of both ERβ and, in particular, the ERβ-
LBD. This is consistent with the notion that corepressors
restrict the activity of agonist-bound ERβ-LBD.

Conclusions
NRs generally interact with the corepressors N-CoR and
SMRT either in the absence of ligand, or in the presence of
receptor antagonists, and agonists promote corepressor
release [4]. In this study, we demonstrated that ERβ binds
to N-CoR in the presence of ER agonists such as estradiol
and DES and the phytoestrogens genistein and cou-
mestrol, but not in the presence of SERMs. Moreover, this
interaction is dependent upon ERβ AF-2, including H12,
and is competed by NR box peptides but not ID peptides.
The hormone-dependent component of the ERβ /N-CoR
interaction maps to the extreme C-terminus of N-CoR,
which has not been previously implicated in NR interac-
tions, and requires a sequence that resembles an ERβ-spe-
cific NR box (PLTIRMLS, β-box). In this regard, ERβ differs
from ERα, which probably binds ID motifs in a SERM-
dependent fashion [49,50] and shows reduced binding to
N-CoR in the presence of estradiol [39]. ERβ also differs
from many other NRs, which either bind N-CoR in the
absence of ligand and are released in the presence of
ligand or interact with N-CoR in the presence of antago-
nists but not agonists [4].

The fact that the mode of ERβ interaction with N-CoR
resembles that of NRs with coactivators [4], or with
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corepressors that modulate the activity of liganded NR
complexes, such as RIP140 [10], raises the possibility that
ERβ may be able to recruit N-CoR and SMRT to estrogen-
regulated promoters in response to agonists and that the
balance of overall ERβ activity in the presence of estrogens
may be regulated by competition between p160s and
corepressors for the same ERβ AF-2 surface. We recognize
that our studies do not directly address this issue. Our

attempts to identify ERβ mutants that differentiate
between GRIP1 and N-CoR binding to analyze the role of
agonist-dependent corepressor binding have not yet been
successful (probably because ERβ utilizes the same surface
to bind both cofactors). Moreover, transfection of N-CoR
or various mutated N-CoR derivatives did not signifi-
cantly affect ERβ activity at EREs or AP-1 sites (data not
shown). We do not understand why, but in our hands,

Sequence comparison of putative NR box-like motif (β-box) with known ER AF-2 interacting peptidesFigure 5
Sequence comparison of putative NR box-like motif (β-box) with known ER AF-2 interacting peptides. Homologies between 
the β-box and ERβ H12 or the artificial ERβ interacting peptide 293 are indicated with thick (homologous) or thin (conserved 
nature of side chain) lines.
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The N-CoR β-box binds ERβFigure 6
The N-CoR β-box binds ERβ. (A) Peptide competitions. Binding of ERβ to either bacterially expressed GST-N-CoR (amino 
acids 2239–2453) was determined in the presence of increasing doses of competitor peptide (amounts shown at top refer to 
µg of peptide, plus signs refer to the presence of estradiol in the assay). (B) Interaction of ERβ with different peptides in mam-
malian two-hybrid assays. A representative experiment is shown. Errors are derived from three separate wells. (C) Analysis of 
ERβ interaction with mutant Gal-N-CoR fusion proteins. Values were determined as in Fig. 3.
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The β-box is an ERβ-specific NR boxFigure 7
The β-box is an ERβ-specific NR box. (A) Interactions of VP16-NR fusions with the Gal-β-box fusion or a GAL-GRIP1 (amino 
acids 610–770) control were determined in HeLa cell transfections. A representative experiment is shown. (B) Peptide com-
petitions for ERα and ERβ binding to GST-GRIP1. Experiments utilized 10µg of competitor (C) Mutation of the β-box to 
resemble a consensus LXXLL motif. The panel shows the results of a mammalian two-hybrid assay in which binding of Gal-N-
CoR or Gal-N-CoR T2402L to VP16-ERβ or VP16-ERα was assayed.
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transfected N-CoR also fails to affect TR or ERα activity
(data not shown), despite the fact that it clearly interacts
with both NRs. Nevertheless, we suspect that estrogen-
dependent N-CoR binding may represent an important
component of the regulation of ERβ activity. As described
in the Introduction, ERα and ERβ must interact differen-
tially with factors that modulate ER activity in the pres-
ence of estrogens. The finding that estrogens suppress N-
CoR binding to ERα [39], but promote N-CoR binding to
ERβ represents the first demonstration of a corepressor
that shows completely distinct modes of hormone-
dependent interaction with the ER isoforms. Thus, N-CoR
and SMRT and their associated HDACs are excellent can-
didates to explain some of the differential behaviors of the
ER isoforms. Consistent with this notion, the apparent
weak transcriptional activity of the ERβ LBD is a conse-
quence of corepressor HDAC activity at some level (Fig.

8). Full verification of the importance of ERβ interaction
with N-CoR will await demonstration that ERβ recruits N-
CoR and SMRT to estrogen-regulated promoters in vivo,
and that this event is related to modulation of estrogen
response.

While the ER isoforms have contrasting effects on AP-1
activity in the presence of estrogens, ERα truncations that
lack the NTD and ERβ both enhance AP-1 activity in the
presence of SERMs [30,31]. Mutational analysis of ERα
action at AP-1 sites suggests these effects may be related to
N-CoR binding [39], and we have proposed that SERM
action at AP-1 sites may therefore involve contacts with
corepressors [31,51]. The fact that ERα and ERβ show
completely different ligand preferences of interaction with
N-CoR suggests that the target for SERM activation at AP-
1 sites may not be N-CoR in both cases. Thus, this finding

TSA Enhances ERβ-LBD activityFigure 8
TSA Enhances ERβ-LBD activity. (A) Results of a HeLa cell transfection in which ERα and ERβ activity was compared at a sim-
ple ERE responsive reporter gene. The value obtained in the absence of ER and ligand was set at 1 (irrespective of the presence 
or absence of TSA, 100 nM). Other values were calculated relative to this value. A single representative experiment is shown 
with errors derived from three wells. (B) Results of transfection in which ERα and ERβ LBD activities were compared in the 
absence (left) or presence (right) of TSA (100 nM); note differences in scale. A single representative experiment is shown. 
Standard errors are derived from three wells.
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complicates our attempts to explain this unusual phe-
nomenon. Perhaps the ER isoforms enhance AP-1 activity
by superficially similar mechanisms that involve different
cofactors. Alternatively, ERα and ERβ action at AP-1 sites
could, in fact, be mediated by SERM-dependent contacts
with a common cofactor that is, as yet, unidentified. This
common factor may yet prove to be N-CoR if ERβ interac-
tions with the β-box were somehow masked in vivo.

What features of the β-box contribute to ERβ specificity?
Intriguingly, the β-box contains N-terminal proline and
C-terminal serine residues that extend the homology of
this region to an artificial ERβ-specific peptide [45]. How-
ever, the β-box also lacks the first Leu of the consensus
LXXLL. A mutation (PLTIRML>PLLIRML) that restores the
LXXLL consensus increases ERβ binding to N-CoR and
permits ERα to bind to N-CoR in the presence of estrogens
in mammalian two-hybrid assays. Thus, the unusual
sequence of the β-box contributes to ERβ specificity and
ERβ can tolerate the absence of a conserved N-terminal
leucine in LXXLL motifs. ERβ might bind to yet more
cofactors that contain variant NR boxes that resemble the
β-box. Other aspects of ERβ interactions with corepressors
warrant further study. It will be interesting to understand
whether the weaker ERβ interactions with other regions of
N-CoR (which are insensitive to ICI) play a role in ERβ
binding (Fig. 4). Finally, SMRT also binds ERβ in the pres-
ence of estrogens, but we have not explored the structural
features that promote this interaction. Intriguingly,
human SMRT contains a sequence insertion at the posi-
tion of the hydrophobic pair in the N-CoR β-box, which
apparently leads to deletion of both residues (N-CoR/
RMLS>SMRT/RLqagvmaS) [52]. Perhaps SMRT contains a
different NR interacting motif or the N-CoR NR box
sequence may be more complex than we have initially
reported here.

Methods
Materials
Estradiol, diethylstilbestrol (DES), tamoxifen, genistein,
coumestrol, thyroid hormone, retinoic acid and trichosta-
tin A (TSA) were purchased from Sigma (St. Louis, MO).
ICI 182,780 was a gift from Alan Wakeling (Astra/Zeneca
Pharmaceuticals, Macclesfield UK). Raloxifene was a gift
from Stefan Nilsson (KaroBio AB, Huddinge, Sweden).
Peptides were synthesized at the Biomolecular Resource
Center at UCSF.

The following plasmids (pSG5-ERα, pSG5-ERβ (amino
acids 1–530) [31], pGEX-N-CoR and pGEX-SMRT[39],
VP16-TRβ and Gal-N-CoR[16], GST-N-CoR fusions[17],
ERE-LUC, GK1/Gal4 responsive reporter and Gal-ERα
LBD [53], pM-D2, pM-D47, pM-F6[46]) have been previ-
ously described. VP16-ERβ LBD and Gal-ERβ LBD contain
human ERβ sequences and were gifts from Dr. Dale

Leitmann (University of California, San Francisco). VP16-
RAR-LBD was a gift from Dr. David Moore, Baylor, Hou-
ston, Texas. Gal-GRIP1 NR box (1,2,3) fusion (amino
acids 610–770) was prepared by PCR amplification of the
appropriate region of GRIP1 (primers obtained from Bio-
molecular Resource Center, UCSF) containing EcoRI and
SalI sites, the PCR fragment was digested with these
enzymes and subcloned into the pM GAL4 expression vec-
tor (Clontech Laboratories, Inc. Palo Alto, CA). VP16-ERβ
mutations and Gal-N-CoR mutations were prepared using
standard PCR-based site directed mutagenesis (Quick-
change Kit, Stratagene, La Jolla, CA) and confirmed by
sequencing. The GAL4-β box fusion was prepared by syn-
thesizing oligonucleotides corresponding to the β-box
sequence with engineered EcoRI and SalI restriction sites.
Annealed and phosphorylated double stranded oligonu-
cleotide was subcloned into the appropriate sites in the
PM vector.

Bacterial Protein Expression and GST Pulldown Assays
GST-fusions were expressed in E. Coli BL21 [28]. Cultures
were grown to OD600 1.5 at room temperatures (approx-
imately 22°C) and protein production was initiated by
addition of IPTG to 1 mM. After four hours, bacterial pel-
lets were obtained, resuspended in 20 mM HEPES pH 7.9/
80 mM KCl/6 mM MgCl2/1 mM Dithiothreitol/1 mM
ATP/0.2 mM phenylmethylsulfonyl fluoride and protease
inhibitors and sonicated. Debris was pelleted by centrifu-
gation in an ss34 rotor for 1 hour at 12,000 rpm. The
supernatant was incubated with glutathione sepharose 4B
beads (Amersham Pharmacia Biotech AB, Uppsala, Swe-
den) and washed as previously described. Protein prepa-
rations were stored at -20°C in 20% glycerol.

Labeled ERs were produced using coupled in vitro tran-
scription-translation (TNT kit, Promega, Madison, Wis-
consin). Assays were carried out in a volume of 150µl that
contained 137.5µl of ice-cold protein binding buffer
(PBB) along with 10µl of GST-bead slurry corresponding
to 3µg of fusion protein, 1µl of in vitro translated protein
and 1.5µl of ligand or vehicle and/or peptides or vehicle.
PBB was freshly prepared in 24 ml aliquots composed of
20 ml A-150 (20 mM Hepes, 150 mM KCl, 10 mM MgCl2
and 1% glycerol), and 2 ml each of phosphate buffered
saline supplemented, respectively, with 1% Triton X-100
and 1% NP-40. PMSF, DTT, BSA and protease inhibitor
cocktail (Novagen) were added to 0.1 mM, 1 mM, 2µg/ml
and 1/1000 dilution respectively. The mix was incubated
for two hours in the cold room with gentle agitation, the
beads were pelleted by spinning briefly on a bench top
Eppendorf centrifuge, washed four times with PBB con-
taining no BSA, and the pellet was dried under vacuum for
twenty minutes. Labeled protein was subjected to SDS-
polyacrylamide gel electrophoresis and autoradiography.
Page 12 of 15
(page number not for citation purposes)



Nuclear Receptor 2003, 1 http://www.nuclear-receptor.com/content/1/1/4
Transfections
HeLa cells were grown in DME/F-12 Ham's 1:1 mix, with-
out phenol red (Sigma) containing 10% iron supple-
mented calf serum (Sigma) and pen-strep. Cells were
transfected by electroporation [28]. Transfections con-
tained 2µg of luciferase and actin-β-galactosidase report-
ers and, where indicated, 1µg of ER, VP16-fusion protein
or GAL4-fusion protein expression vectors or empty vec-
tor controls. Luciferase and β-galactosidase activities were
measured using luciferase (Promega, Madison, WI) and
Galacto-Light assay systems (Tropix, Bedford, MA).

List of Abbreviations
AIB1 Amplified in breast cancer 1.

AF-1 Activation function 1

AF-2 Activation function 2

AP-1 Activator protein 1

CARM1 Coactivator associated arginine methyl-trans-
ferase 1.

CBP CREB binding protein.

CRE Cyclic Amp response element

DAX Dosage sensitive sex reversal adrenal hyperplasia
congenital critical region on the X-chromosome, region 1.

DES Diethylstilbestrol

DNA Deoxyribonucleic acid

DBD DNA binding domain

TNFα Tumor necrosis factor alpha 1

E2 Estradiol

ERα Estrogen receptor alpha

ERβ Estrogen receptor beta

ERE, Estrogen response element

GRIP1 Glucocorticoid receptor interacting protein 1;

GST Glutathione S-transferase

H Helix

HAT Histone acetyl-transferase

HET-SAFB Hsp27-ERE-TATA binding protein/scaffold
attachment factor B.

HDAC Histone de-acetylase

ID Interaction domain.

LBD Ligand binding domain

NR Nuclear receptor

NTD Amino terminal domain

N-CoR Nuclear receptor corepressor

PBS Phosphate buffered saline

PCR Polymerase chain reaction

PERC PGC-1 related estrogen receptor coactivator

PGC-1 Peroxisome proliferator activated receptor gamma
coactivator 1.

RAR Retinoic acid receptor

REA Repressor of estrogen receptor activity

RIP140 Receptor interacting protein of 140 Kd

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel
electrophoresis

SMRT Silencing Mediator of Retinoid and Thyroid
Responsive transcription.

SERM Selective estrogen receptor modulator(s)

SHP Short heterodimer partner

SRC-1 Steroid receptor coactivator 1

TR Thyroid receptor

TRAP220 TR associated protein of 200 Kd.
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